THE JOURNAL OF ANTIBIOTICS

ISOLATION AND STRUCTURES OF NITROGEN-FREE PLATENOLIDE GLYCOSIDES

II. THE 5-O-(α -MYCAROSYL)- AND 5-O-(3'-DEMETHYL- β -MYCAROSYL)-PLATENOLIDES I AND II

U. GRÄFE, W. SCHADE, W. IHN, G. REINHARDT, K. DORNBERGER and H. THRUM

Zentralinstitut für Mikrobiologie und experimentelle Therapie der Akademie der Wissenschaften der DDR, DDR-69 Jena, Beutenbergstrasse 11, G.D.R.

and L. RADICS

NMR Laboratory, Central Research Institute of Chemistry, Hungarian Academy of Sciences, H-1525 Budapest, P.O. Box 17, Hungary

(Received for publication October 16, 1979)

Three novel glycosides of platenolides I and II containing either mycarose (2,6-dideoxy-3-C-methyl-L-ribohexopyranose) or 3-demethyl-mycarose (2,6-dideoxy-L-ribohexopyranose) were isolated as the shunt products of turimycin biosynthesis by an industrial strain of *Strepto-myces hygroscopicus* IMET JA 6599. By means of MS, ¹³C and ¹H NMR spectroscopic studies, their structures were assigned as 5-O-(α -mycarosyl)-platenolide I (MYC-Pl-II), 5-O-(α -mycarosyl)-platenolide II (MYC-Pl-II) and 5-O-(3'-demethyl- β -mycarosyl)-platenolide II (DM-MYC-Pl-II). The occurrence of 3-demethyl-mycaroside amongst the shunt metabolites is discussed in terms of its biosynthesis.

Besides the leucomycin-type antibiotic turimycin the industrial strain of *Streptomyces hygroscopicus* IMET JA 6599-R 27-158v-rek.2 was shown to produce a wide spectrum of other secondary metabolites, including diverse nitrogen-free glycosides of platenolides I and II containing 3-C-acetylated hexoses¹). These results made it tempting to search for platenolide glycosides of the mycarose (2,6-dideoxy-3-C-methyl-L-ribohexopyranose)²), a common sugar constituent of turimycin. The present communication deals with the isolation and structure elucidation of three novel nitrogen-free glycosides of the platenolide I (MYC-Pl-I), 5-O-(α -mycarosyl)-platenolide II (MYC-Pl-II) and 5-O-(3'-demethyl- β -mycarosyl)-platenolide II (DM-MYC-Pl-II). The structure and stereochemistry of the novel glycosides are displayed in Fig. 1. The altered stereochemistry of glycosidic bond in DM-MYC-Pl-II provides useful information on the tentative biosynthetic pathway of the 2,6-dideoxy-L-ribohexopyranose (digitoxose)⁸.

Materials and Methods

The organism, conditions of fermentation, chromatographic procedures, chemical derivatizations and instruments employed in the present study were identical with those described in part I of this series¹⁾.

THE JOURNAL OF ANTIBIOTICS

Fig. 1. Chemical structure of platenolide glycosides. MYC-Pl-I ($R_1/R_2=0$; $R_3=my$ carose (MYC)), MYC-Pl-II ($R_1/R_2=H$,OH; $R_3=my$ carose (MYC)) and DM-MYC-Pl-II ($R_1/R_2=H$,OH; $R_3=3$ -demethyl-mycarose (DM-MYC)).

Results and Discussion

Isolation and Physicochemical Properties of Glycosides

MYC-Pl-II and DM-MYC-Pl-II were isolated from the butylacetate extract of fermentation broth of the *Streptomyces hygroscopicus* IMET JA 6599-R 27-158v-rek.2 as described previously¹⁾. Isolation and purification were carried out by column chromatography on Sephadex LH-20 and silica gel. From 3 g of a glycosidic mixture obtained by chromatography on Sephadex LH-20¹⁾ approximately 50 mg of MYC-Pl-I, 150 mg of MYC-Pl-II and 50 mg of DM-MYC-Pl-II were isolated. The physicochemical characteristics of novel glycosides are collected in Table 1. MYC-Pl-I was differentiated from MYC-Pl-II and DM-MYC-Pl-II by its IR absorption (1500~1720 cm⁻¹) and UV band at 280 nm characteristic of the α , β , γ , σ -dienone chromophore.

Structure Elucidation

The structure and stereochemistry of the new products were determined by means of MS, ¹H and ¹³C NMR spectral analysis. Shown in Table 2 are some diagnostic m/e values for MYC-Pl-I, MYC-

	MYC-Pl-I		MYC-Pl-II		DM-MYC-Pl-II	
Appearance Formula Mol. Wt. (MS) m.p. (°C)	colourless crystals $C_{27}H_{44}O_9$ 512.2993 (M ⁺) 114~116		colourless crystals $C_{27}H_{49}O_{9}$ 496.3055 (M ⁺ - H ₂ O) 191~192		colourless crystals $C_{20}H_{44}O_9$ 482.2913 (M ⁺ -H ₂ O) 109~110	
Elem. Anal. (%) C H	Found 63.11 8.74	Calcd. 63.25 8.65	Found 62.84 8.91	Calcd. 63.01 9.01	Found 62.26 8.58	Calcd. 62.37 8.86
IR (KBr, cm ⁻¹)	960, 1005, 1160, 1175, 1320, 1360, 1455, 1590, 1710, 2875, 3500, 3600,	1060, 1120, 1250, 1270, 1375, 1405, 1630, 1675, 2925, 2960, 3680	985, 1000, 1120, 1140, 1205, 1250, 1370, 1405, 1710, 2850, 3480, 3600,	1050, 1070, 1155, 1170, 1260, 1315, 1450, 1590, 2930, 2960, 3680	990, 1005, 1140, 1160, 1270, 1315, 1400, 1450, 2870, 2930, 3600, 3680	1075, 1125, 1205, 1250, 1360, 1370, 1590, 1710, 2960, 3500,
UV λ_{\max}^{EtOH} (nm)	280		232		232	
Rf, in parentheses: two runs	0.36 (0.55)		0.28 (0.46)		0.14 (0.21)	

Table 1. Physicochemical properties of MYC-Pl-I, MYC-Pl-II and DM-MYC-Pl-II.

solutions).

Fragment	m/e values of compound						
	MYC- Pl-I	Ac ₂ - MYC- Pl-I	MYC- Pl-II	Ac ₃ - MYC- Pl-II	DM- MYC- Pl-II	Ac ₄ - DM- MYC- Pl-II	
M+	512	596	514	640	500	668	
$M^{+}-H_{2}O$	494	578	496	622	482	_	
Aglycone +O	367	409	369	454	369	454	
Aglycone -O	351	393	353	437	353	437	
Aglycone $+O-H_2O$ (-HAc)	_	_	351	393	351	393	
Sugar-O	145	187	145	187	131	215	
$\substack{Sugar-O\\-H_2O}$	127	169	127	169	113	_	
Sugar-O -2H ₂ O	109	_	109	_	95	-	

Table 2. Diagnostic m/e values of the glycosides and their acetylated derivatives.

Pl-II and DM-MYC-Pl-II and their acetylated derivatives. ¹³C Chemical shifts data and ¹H parameters are collected in Tables 3 and 4, respectively.

Chemical analysis and accurate mass measurements (Table 2) afforded the molecular formula for the glycosides (see Table 1), the aglycones (m/e 367, $C_{20}H_{s1}O_6$; m/e 369, $C_{20}H_{s3}O_6$) and the sugar fragments (m/e 145, $C_7H_{13}O_3$; m/e131, $C_6H_{11}O_3$). The similarity of fragmentation patterns with those of other platenolide glycosides¹⁾ showed that platenolide I (Pl-I) and

MYC-PI-II MYC-PI-II DM-MYC-Carbon Pl-II C- 1 173.76 174.34 174.44 38.12 38.19 C- 2 38.53 C- 3 67.75 68.28 68.26 C- 4 85.90 85.12 85.78 C- 5 80.12 79.09 80.63 C- 6 37.32 36.97 38.65 C- 7 32.25 32.07 34.25 C- 8 44.89 33.83 33.46 C- 9 202.62 73.42 73.42 130.01 C-10 122.28 130.43 134.05 134.45 C-11 143.13 C-12 131.47 131.36 131.71 C-13 141.09 132.47 132.72 C-14 41.48 41.76 41.84 C-15 68.91 69.15 69.37 C-16 20.27 20.07 20.13 C-17 22.31 21.73 20.13 C-18 11.75 11.93 11.93 C-19 17.66 15.22 14.74 C-20 62.13 61.84 61.81 C- 1' 99.84 98.96 100.19 C- 2' 38.50 41.48 41.42 C- 3' 70.10 70.08 69.03* C- 4' 76.54 76.64 73.35 C- 5' 66.37 66.34 68.59* C- 6' 17.76 17.86 17.97 C- 7' 25.51 25.51

Table 3. ¹⁸C Chemical shift data of glycosides (in

ppm, relative to internal TMS, in dilute CDCl₃

* Assigments may be interchanged.

platenolide II (Pl-II) constitute the aglycone part of these molecules, too. Acetylation of MYC-Pl-I, MYC-Pl-II and DM-MYC-Pl-II afforded, respectively, the diacetate (Ac_2 -MYC-Pl-I), triacetate (Ac_3 -MYC-Pl-II) and tetraacetate (Ac_4 -DM-MYC-Pl-II). MS analysis revealed that MYC-Pl-I and MYC-Pl-II contain one, whereas DM-MYC-Pl-II possesses two acylable OH functions within the hexose unit.

Evidence for the presence of a second, non-acylable hydroxyl group in MYC-Pl-I and MYC-Pl-II was provided by the loss of two molecules of water from the hexose fragments (m/e 127 and 109) and also by ¹H-²H exchange experiments which resulted in the expected shift of the m/e value of mono-acetylated hexose fragment (from 187 to 188).

Reduction with NaBH₄ of MYC-PI-I yielded a 1:1 mixture of C-9 stereoisomers of MYC-PI-II with Rf 0.35 and Rf 0.28 on TLC suggesting the identity of the latter compound with the naturally occurring glycoside. After separation by preparative TLC on silica gel G (solvent: benzene - acetone, 5:3, v/v, two runs) the two components displayed mass spectra which proved identical with that of naturally occurring MYC-PI-II.

Proton	MYC-Pl-I	MYC-Pl-II	DM-MYC-Pl-II
C- $2H_A$ (${}^{2}J_{AB}$; ${}^{3}J_{2A,3}$)	2.74 (16.1; 10.5)	2.66 (15.1; 10.4)	2.66 (15.0; 10.6)
C- 2H _B (³ J _{2B,3})	2.22 (1.5)	2.22 (1.8)	2.19 (1.7)
C- 3H (³ J _{3,4})	3.74 (1.8)	3.69 (1.8)	3.72 (1.7)
C- 4H (³ J _{4,5})	3.00 (9.3)	2.95 (8.7)	2.97 (9.0)
C- 5H (³ J _{5,6})	4.05 (0.6)	4.04 (0.5)	4.05 (0.8)
C- 9H (³ J _{8,9} ; ³ J _{9,10})	_	4.14 (3.9; 8.4)	4.12 (4.3; 9.5)
C-10H (³ J _{10,11})	6.25 (15.0)	5.70 (14.7)	5.68 (14.9)
C-11H (³ J _{11,12})	7.27 (10.2)	6.20 (9.9)	6.21 (9.6)
C-12H (³ J _{12,13})	6.18 (15.0)	6.04 (14.0)	6.05 (14.0)
C-13H (${}^{3}J_{13,14A}$; ${}^{3}J_{13,14B}$)	6.07 (4.5; 4.5)	5.58	5.60
$C-14H_{A}$ (² J_{AB} ; ³ $J_{13,14B}$)	2.6 (13.0; 10.8)	2.1 (13.5; 10.1)	2.1 (13.5; 11.0)
$C-14H_B$ (${}^{3}J_{14B,15}$)	2.35 (2.6)	2.5 (3.3)	2.5 (3.4)
C-15H (³ J _{15,16})	5.19 (6.5)	5.24 (6.3)	5.25 (6.3)
C-16H (Me)	1.31	1.29	1.25
C-18H (Me) $({}^{8}J_{17,18})$	0.92 (6.8)	1.00	0.97
C-19H (Me) (³ J _{8,19})	1.17 (7.0)	1.02 (6.7)	0.98 (6.8)
C-20H (OMe)	3.53	3.47	3.47
C-1'H (${}^{3}J_{1',2'A}$; ${}^{3}J_{1',2'B}$)	5.16 (3.7; 1.5)	5.17 (3.8; 1.5)	5.04 (9.7; 2.3)
$C-2'H_{A}$ (² J_{AB} ; ³ $J_{2'A,3'}$)	1.82 (14.5; —)	1.81 (14.4;)	1.71 (13.8; 3.1)
$C-2'H_B ({}^{3}J_{2',B,3'})$	2.10 (—)	2.08 ()	2.10 (3.4)
C-3'H $({}^{3}J_{3',4'})$			3.5 (3.4)
C–4'H $({}^{3}J_{4',5'})$	2.96 (9.6)	2.94 (9.6)	3.24 (9.5)
C-5'H (⁸ J _{5',6'})	3.78 (6.5)	3.77 (6.1)	3.68 (7.3)
C-6'H (Me)	1.27	1.28	1.29
C-7'H (Me)	1.24	1.23	-

Table 4. ¹H NMR parameters of glycosides*

* in CDCl₃ solutions. Chemical shift values in ppm, relative to internal TMS. ¹H-¹H coupling constants in Hz as obtained from first order approximations. Mutual interproton couplings are given only once.

The hydrolysis of MYC-Pl-I and MYC-Pl-II with 0.1 N HCl for 3 days at room temperature afforded the free sugar. By MS analysis, the TLC spot with Rf 0.15 was found to be identical with mycarose.

The structure and the stereochemistry of the novel glycosides MYC-Pl-I, MYC-Pl-II and DM-MYC-Pl-II were unambiguously established by detailed analysis of the ¹H and ¹⁸C NMR spectra aided by extensive ¹H-¹H double resonance experiments and cross-correlations between ¹H and ¹⁸C NMR spectra. The pertinent spectral parameters are displayed in Tables 3 and 4.

Comparison of the ¹H and ¹⁸C NMR results with the corresponding values obtained by us for the 5-O-(4',6'-dideoxy-3'-C-acetyl- β -D-hexopyranosyl)-platenolides I and II¹⁾ clearly showed that MYC-Pl-II and DM-MYC-Pl-II constitute two different glycosides of platenolide II⁴⁾, whereas MYC-Pl-I contains platenolide-I⁴⁾ as the aglycone. Analysis of the ¹H and ¹⁸C NMR parameters, furthermore, revealed that MYC-Pl-I and MYC-Pl-II feature a common sugar moiety, identified, through the ¹H-¹H coupling patterns and ¹⁸C chemical shift values, as mycarose²⁾. The structure of sugar and the orientation of sugar protons in DM-MYC-Pl-II (*i.e.* C-1'H_{ax}, C-3'H_{eq}, C-4'H_{ax} and C-5'H_{ax}) readily followed from the ¹H NMR results (see Table 4).

The finding of mycarosyl- and 3-C-acetyl hexopyranosyl-platenolides¹⁾ in the fermentation broth

THE JOURNAL OF ANTIBIOTICS

of an industrial strain of the macrolide antibiotic-producing *Streptomyces hygroscopicus* suggests excessive formation of the aglycone precursors giving rise to the induction of alternative pathways of the secondary metabolism. As shown in our preceding work⁵⁾, this high-producing *Streptomyces* strain contains an increased level of enzymes that produce the building units of macrocyclic aglycone, a feature which may explain the production of platenolides I and II in large quantities.

Furthermore the 3-demethyl-L-mycarose, previously established as the constituent of a polyene antibiotic (digitoxose)³⁾, seems to represent a shunt metabolite of mycarose biosynthesis^{6,7,8)}. As noted above, the relative stereochemistry derived from ¹H-¹H coupling constants suggests β -configuration for the glycosidic linkage of DM-MYC-Pl-II in contrast to the appropriate derivatives of the mycarose *in which* the sugar is bound α -glycosidically. Since the mycarose biosynthesis is known to start with the α -anomer of dTDP-glucose^{6,7)}, the phenomenon could be explained perhaps by assuming the β -anomer of dTDP-glucose to be the biogenetic ancestor of 3-demethyl-mycarose, thus giving rise to the formation of β -configurated derivatives.

Acknowledgements

The authors are grateful to Dr. KAJTÁR-PEREDY and Dr. E. BAITZ-GÁCS (NMR Laboratory, Central Research Institute of Chemistry) for their assistance in the compilation of NMR data. The technical assistance of Miss E. STEIN and Mrs. M. Rózsa is greatly appreciated.

References

- GRÄFE, U.; W. SCHADE, W. IHN, G. REINHARDT, K. DORNBERGER, H. THRUM & L. RADICS: Isolation and structures of nitrogen-free platenolide glycosides. I. The 5-O-(deoxy-3'-C-acetyl-β-D-hexopyranosyl)platenolides I and II. J. Antibiotics 33: 566~573, 1980
- GRISEBACH, H. & R. SCHMID: Chemie und Biochemie verzweigtkettiger Zucker. Angew. Chem. 84: 192~206, 1972
- ZIELINSKI, J.; E. JERCZEK, P. SOWINSKI, L. FALKOWSKI, A. RUDOWSKI & E. BOROWSKI: The structure of a novel sugar component of polyene macrolide antibiotics: 2,6-Dideoxy-L-ribohexopyranose. J. Antibiotics 32: 565~568, 1979
- FURUMAI, T. & M. SUZUKI: Studies on the biosynthesis of basic 16-membered macrolide antibiotics, platenomycins. III. Production, isolation and structures of platenolides I and II. J. Antibiotics 28: 783~788, 1975
- GRÄFE, U.; H. BOCKER & H. THRUM: Precursorbildung und Biosynthese des Makrolidantibiotikums A 6599 (Turimycin) durch *Streptomyces hygroscopicus* JA 6599. Z. Allg. Mikrobiol. 15: 249~257, 1975
- MATERN, H.; G. U. BRILLINGER & H. PAPE: Stoffwechselprodukte von Mikroorganismen. 114. Mitteil. Thymidin-diphospho-D-glucose-oxidoreductase aus *Streptomyces rimosus*. Arch. Mikrobiol. 88: 37~48, 1973
- PAPE, H. & G. U. BRILLINGER: Stoffwechselprodukte von Mikroorganismen. 113. Mitteil. Biosynthese von Thymidin-diphosphomycarose durch ein zellfreies System aus *Streptomyces rimosus*. Arch. Mikrobiol. 88: 25~35, 1973
- VÁNĚK, Z. & J. MÁJER: Macrolide antibiotics. In: Antibiotics. II. Biosynthesis. Ed. by D. GOTTLIEB & P. D. SHAW, pp. 154~188, Springer Verlag Berlin-Heidelberg-New York, 1967